
AI Traineree

Dawid Laszuk

Nov 21, 2021

CURRENT CONTENTS:

1 Getting started 3
1.1 What is this? . 3
1.2 Installation . 3
1.3 Issues or questions . 3
1.4 Citing . 4

2 Examples 5
2.1 Single agent . 5
2.2 Multi agent . 5
2.3 More examples . 6

3 Agents 7
3.1 DQN . 7
3.2 Rainbow . 7
3.3 PPO . 7
3.4 DDPG . 7
3.5 D3PG . 7
3.6 D4PG . 7
3.7 SAC . 7

4 Multi agents 9
4.1 MADDPG . 9
4.2 IQL . 9

5 Buffers 11
5.1 Basis . 11
5.2 Replay Buffer . 11
5.3 Replay Experience Buffer (PER) . 11
5.4 Rollout Buffer . 11

6 Policies 13

7 Networks 15
7.1 Bodies . 15
7.2 Heads . 15

8 Environment Runners 17
8.1 Single agent . 17
8.2 Multi agent . 17

9 Tasks 19

i

10 Development 21
10.1 Philosophy . 21
10.2 Concepts . 21

11 Indices and tables 23

Index 25

ii

AI Traineree

As you may have noticed, current version of the documentation is rather modest. True. But be patient, young one, as
this is only the beginning. Hopefully.

It is always a motivational boost and a driver to see that someone is using the project. Feel free to let me know if you
have any questions or anything, and I’ll sure try to help.

CURRENT CONTENTS: 1

AI Traineree

2 CURRENT CONTENTS:

CHAPTER

ONE

GETTING STARTED

1.1 What is this?

Have you heard about DeepMind or recent advancments in the Artificial Intelligence like beating Go game, StarCraft
2 or Dota2? The AI Traineree is almost the same. Almost in the sense that it’s unlikely to achieve the same results and
those algorithms aren’t provided (yet) but at least we use the same terminology. That’s something, right?

AI Traineree is a collection of (some) Reinforcement Learning algorithms. The emphasis is on the Deep part, as in
Deel Learning, but there are/will be some of more traditional algorithms. Yes, we are fully aware that there are already
some excelent packages which provide similar code, however, we think we still provide some value especially in:

• Multi agents. The goal is to focus on multi agent environments and algorithms. It might be a bit modest right
now but that’s simply because we want to establish a baseline.

• Implementation philosophy. Many look-alike packages have the tendency to pass environment as an input to
agent’s instance. We consider this a big no-no. The agent lives in the environment, it lives thanks to the
environment. Such distinction already makes algorithms’ implementations different.

1.2 Installation

Currently the only way to install the package is to download and install it from the GitHub repository, i.e. https:
//github.com/laszukdawid/ai-traineree.

Assuming that this isn’t your first git project, the steps are:

$ git clone https://github.com/laszukdawid/ai-traineree.git
$ cd ai-traineree
$ python setup.py install

1.3 Issues or questions

Is there something that doesn’t work, or you don’t know if it should, or simply have a question? The best way is to
create a github issue (https://github.com/laszukdawid/ai-traineree/issues).

Public tickets are really the best way. If something isn’t obvious then it means that others must have the same question.
Be a friend and help them discover the answer.

In case you want some questions or offers that would like to ask in private then feel free to reach me at ai-
traineree@dawid.lasz.uk .

3

https://github.com/laszukdawid/ai-traineree
https://github.com/laszukdawid/ai-traineree
https://github.com/laszukdawid/ai-traineree/issues
mailto:ai-traineree@dawid.lasz.uk
mailto:ai-traineree@dawid.lasz.uk

AI Traineree

1.4 Citing

If you found this project useful and would like to cite then we suggest the following BibTeX format.

@misc{ai-traineree,
author = {Laszuk, Dawid},
title = {AI Traineree: Reinforcement learning toolset},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/laszukdawid/ai-traineree}},

}

4 Chapter 1. Getting started

CHAPTER

TWO

EXAMPLES

2.1 Single agent

2.1.1 DQN on CartPole

This example uses the CartPole environment provided by the OpenAI Gym. If you don’t have the Gym then you can
install it either through pip install gym.

from ai_traineree.agents.dqn import DQNAgent
from ai_traineree.runners.env_runner import EnvRunner
from ai_traineree.tasks import GymTask

task = GymTask('CartPole-v1')
agent = DQNAgent(task.obs_space, task.action_space, n_steps=5)
env_runner = EnvRunner(task, agent)

Learning
scores = env_runner.run(reward_goal=100, max_episodes=300, force_new=True)

Check what we have learned by rendering
env_runner.interact_episode(render=True)

2.2 Multi agent

2.2.1 IQL on Prison

This example uses the Prison environment provided by the PettingZoo. The Prison is simple environment where all
agents are independent with a simple task alternatively touch walls. To install the environment execute pip install
pettingzoo[butterfly].

from ai_traineree.multi_agent.iql import IQLAgents
from ai_traineree.runners.multiagent_env_runner import MultiAgentCycleEnvRunner
from ai_traineree.tasks import PettingZooTask
from pettingzoo.butterfly import prison_v2 as prison

env = prison.env(vector_observation=True)
task = PettingZooTask(env)
task.reset()

(continues on next page)

5

https://gym.openai.com/
https://www.pettingzoo.ml/

AI Traineree

(continued from previous page)

config = {
'device': 'cpu',
'update_freq': 10,
'batch_size': 200,
'agent_names': env.agents,

}
agents = IQLAgents(task.obs_space, task.action_space, task.num_agents, **config)

env_runner = MultiAgentCycleEnvRunner(task, agents, max_iterations=9000, data_
→˓logger=data_logger)
scores = env_runner.run(reward_goal=20, max_episodes=50, eps_decay=0.95, log_episode_
→˓freq=1, force_new=True)

2.3 More examples

Here are only some selected examples. There are many more examples provided in the repository as individual files.
There is examples directory or directly here https://github.com/laszukdawid/ai-traineree/tree/master/examples.

The easiest way to run them is to checkout git package and install it (see note below). Examples can be run as modules
from the root directory, i.e. directory with setup.cfg file. To run cart_dqn example execute:

$ python -m examples.cart_dqn

Note: Examples use some libraries that aren’t provided in the default package installation. To install all necessary
packages make sure to install AI Traineree with [examples] conditions. If you are using pip to install packages then
you should use pip install -e .[examples].

6 Chapter 2. Examples

https://github.com/laszukdawid/ai-traineree/tree/master/examples

CHAPTER

THREE

AGENTS

3.1 DQN

3.2 Rainbow

3.3 PPO

3.4 DDPG

3.5 D3PG

3.6 D4PG

3.7 SAC

7

AI Traineree

8 Chapter 3. Agents

CHAPTER

FOUR

MULTI AGENTS

Usage of “agents” in this case could be a bit misleading. Here are entitites or algorithms that understand how to organize
internal agents to get better in interacting with the environment.

The distinction between these and many individual is that some interaction between agents is assumed. It isn’t a single
agent that tries to do something in the environment and could consider other agents as part of the environment. Typical
cases for multi agents is when they need to achieve a common goal. Consider cooperative games like not letting a ball
fall on the ground, or team sports where one team tries to capture a flag and the other tries to stop them.

4.1 MADDPG

4.2 IQL

9

AI Traineree

10 Chapter 4. Multi agents

CHAPTER

FIVE

BUFFERS

5.1 Basis

This class is the abstraction for all buffers. In short, each buffer should support adding new samples and sampling from
the buffer. Additional classes are required for saving or resuming the whole state. All buffers internally store data in as
Experience but on sampling these are converted into torch Tensors or numpy arrays.

class ai_traineree.types.experience.Experience(**kwargs)
Basic data unit to hold information.

It typically represents a one whole cycle of observation - action - reward. Data type used to store experiences in
experience buffers.

5.2 Replay Buffer

The most basic buffer. Supports uniform sampling.

5.3 Replay Experience Buffer (PER)

5.4 Rollout Buffer

11

AI Traineree

12 Chapter 5. Buffers

CHAPTER

SIX

POLICIES

13

AI Traineree

14 Chapter 6. Policies

CHAPTER

SEVEN

NETWORKS

Networks are dividied depending on their context. For some reason it’s often to find convetion of heads and bodies,
and that’s why we’re keeping it here. If you haven’t heard of these before think about the Frankeinstain monster. Body
is not a whole body but rather a body part, e.g. arms and legs. Obviously(!), they don’t work by themselves so you
need a head which will control them. Some heads take body parts explicitly and build the whole monstrocity and some
heads are predefined to closely match suggestion in a paper. So, in general, a head is more complex and does more
than a body, but for some agents a single body part, e.g. Fully connected network, is good enough.

7.1 Bodies

7.2 Heads

15

AI Traineree

16 Chapter 7. Networks

CHAPTER

EIGHT

ENVIRONMENT RUNNERS

8.1 Single agent

8.2 Multi agent

17

AI Traineree

18 Chapter 8. Environment Runners

CHAPTER

NINE

TASKS

In short, a Task is a bit more than environment. Task takes an environment, e.g. CartPole, as an input but it also
handles state transformation and reward shaping. A Task also aims to be compatible with OpenAI Gym’s API. Some
environments aren’t compatible and so we need to make them.

19

AI Traineree

20 Chapter 9. Tasks

CHAPTER

TEN

DEVELOPMENT

10.1 Philosophy

• Agents are independent from environment. No interaction is forced.

• All agents should have the same concise APIs.

• Modular components but simplicity over forced modularity.

10.2 Concepts

10.2.1 State vs Observation vs Features

State is an objective information about the enviroment. It is from external entity’s point of view. Access to states isn’t
guaranteed even if one has full control over the environment.

Observation is from agent’s perspective. Its domain is defined by agent’s senses and values depend on agent’s state,
e.g. position.

Features are context dependent but generally relate to some output of a transformation. We can transform observation
to a different space, e.g. projecting camera RGB image into an embedding vector, or modify values, e.g. normalize
tensor.

Example: Considering basketball game as an environment. A spectator is the one who might have access to the state
information. In this case, a state would consist of all players’ positions, ball possession, time and score. However,
decide being able to see everything they wouldn’t know whether any player is feeling bad or some places on the field
have draft. An agent, in this situation, is a single player. Everything that they see and know is their observation.
Although they might be able to deduce position of all players, it will often happen that some players will be behind
others or they will be looking in a different direction. Similar to spectator they don’t know about other players stamina
levels but they know theirs which also has an impact on the play. Their physical state and internal thoughts are features.

Code-wise, state is the output of enviroment. Observation is what an agent can get and deals with on input. Feature is
anything that goes through any transfomrations, e.g. bodies and heads. A specific case of a feature is an action.

21

AI Traineree

22 Chapter 10. Development

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

23

AI Traineree

24 Chapter 11. Indices and tables

INDEX

E
Experience (class in ai_traineree.types.experience), 11

25

	Getting started
	What is this?
	Installation
	Issues or questions
	Citing

	Examples
	Single agent
	DQN on CartPole

	Multi agent
	IQL on Prison

	More examples

	Agents
	DQN
	Rainbow
	PPO
	DDPG
	D3PG
	D4PG
	SAC

	Multi agents
	MADDPG
	IQL

	Buffers
	Basis
	Replay Buffer
	Replay Experience Buffer (PER)
	Rollout Buffer

	Policies
	Networks
	Bodies
	Heads

	Environment Runners
	Single agent
	Multi agent

	Tasks
	Development
	Philosophy
	Concepts
	State vs Observation vs Features

	Indices and tables
	Index

